

Understanding Human-AI Work Collaboration using a Randomized Field Study

¹Heinz College of Information Systems and Public Policy, ²Machine Learning Department, ³Tepper School of Business, Carnegie Mellon University

Human+AI team can exploit complementary strengths of both humans and machines and surpass either.

Statistically significant improvements in work quality; improved worker productivity.

Labor Specialization: AI does better on lower-complexity work; humans better in more complex regimes.

Evidence for J.C.R. Licklider's hypothesis that human-machine symbiosis can harness the "cognitive" capabilities of both humans and machines optimally. Abhinav Maurya^{1,2}, Sunder Kekre³, Rahul Telang^{1,3}

Comparing AI, Control, and Treatment

Work Quality				Work Productivity	
Metric	AI	Control	Treatment	Metric	Control
Number of Participants	<u> </u>	15	15	Number of Participants	$\frac{1}{15}$
Total Documents Tagged	2975	2975	2975	Total Documents Tagged	2975
Precision	71.38	65.40	71.78	Median time (minutes/task)	3 37
Recall	53.65	46.78	58.37	A none go time (minutes/task)	5.01
F1-Score	61.26	54.54	64.38	Average time (minutes/task)	0.10
Precision (non-strict)	80.93	77.14	80.35	Throughput (tasks/hour)	11.63
Recall (non-strict)	91.64	83.52	93.82	Throughput (entities/hour)	62.71
F1-Score (non-strict)	85.95	80.20	86.56	True positive entities per hour	40.04
Precision (token-level)	51.07	59.97	62.21	Google searches (per task)	6.72
Recall (token-level)	42.50	57.29	60.96		
F1-Score (token-level)	46.39	58.60	61.58		

Treatment Workers Do Better Than Controls on Precision and

Tagging Correctness versus Complexity (Named Entity Length) Precision Recall

Conclusions and Future Work

- Studied mediating factors of Human-AI collaboration in NLP data annotation services.
- Potential generalization beyond NLP e.g. computer vision where work complexity in object detection might be measured by bounding box complexity.
- Theory for what team construction regimes are better.
- Investigating **pathological regimes** of Human-AI team dynamics.
- Engendering trust in AI agents in Human-AI teams.
- Multistage work and cooperation in Human-AI teams.

Working Paper

http://bit.ly/maurya2019understanding

