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Abstract

We review recent theoretical results underpinning the use of optimal transport and
Wasserstein distances in statistical machine learning. The four primary results
described in this report relate to the use of Wasserstein loss for train multi-class
or multi-label classifiers [1], the use of composite Wasserstein loss to establish
the convergence and contraction rates for mixing distributions in certain finite and
infinite mixture models [2], the guarantees provided by optimal transport when
used for domain adaptation [3, 4], and the use of Wasserstein loss in improving the
training procedure of Generative Adversarial Networks [5].

1 Introduction

Optimal mass transport is an elegant mathematical tool at the intersection of probability theory and
mathematical optimization. Formalized by Monge in 1781 [6], a generalized version of Monge’s
problem was stated by Kantorovich in 1942 [7]. However, theoretical results about the existence of
Monge’s optimal transport maps and Kantorovich’s optimal transport plans (and the accompanying
regularity conditions) have been worked out relatively recently [8, 9]. Spurred by research on the
efficient computation of optimal transport maps [10] and plans [11] and the association between
optimal transport and the Wasserstein metric, optimal transport has been applied in formulating
solutions to numerous machine learning problems such as learning document distances [12, 13],
MCMC-free sampling from Bayesian posteriors [14], image retrieval [15], histogram regression [16],
domain adaptation [17, 3, 4], kernel/metric learning [18, 19], multi-label classification [1], label
distribution learning [20], improved training of Generative Adversarial Networks (GANs) [5, 21],
etc. with impressive results. The associated Wasserstein metric has also been used in statistical
analyses such as high-dimensional two-sample testing [22] and deriving the convergence and posterior
contraction rates for finite and infinite mixture models [2].

In this report, we survey theoretical results that support the methodological constructs based on
optimal transport being developed by the machine learning community. We focus primarily on the
problem of optimal transport of discrete measures (primarily histograms, softmax output probabilities,
and atoms of mixture models). While it may seem restrictive to limit this project to the study of
discrete measures, the use of optimal transport in machine learning theory and methods is almost
exclusively limited to such measures [1, 12, 13, 16, 23, 24, 2].

2 Notation, Assumptions, and Key Facts about Optimal Transport

Here, we introduce the problem of optimal transport and its use in defining the Wasserstein metric
over the space of probability measures. We also specify the notations and assumptions prevalent in
the optimal transport and Wasserstein metric literature. Notations specific to certain papers will be
introduced in their respective sections later on.
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The problem of optimal transportation was formulated by Monge as the discovery of a measurable
map T ∗ that minimizes the cost of transforming (“pushing”) probability measure µ to probability
measure ν with respect to a pre-specified ground metric c(x, y) = |y − x|

minimize
T

∫
Rd
c(x, T (x))f(x)dx

subject to
∫
A

g(x)dx =

∫
T−1(A)

f(x)dx
(1)

The primary limitation of this formulation is that it doesn’t allow any dirac-delta probability masses
of the first measure to split while being pushed into the other measure. As a result, optimal transport
maps do not exist from a discrete measure to a continuous measure, and exist from a discrete measure
to another discrete measure under very limited circumstances. This limitation was rectified by
Kantorovich who formulated the optimal transport problem as the discovery of a transport plan γ∗
over the domain Π(µ, ν) = {γ ∈ P(Rd,Rd) : TX#γ = µ, TY#γ = ν} where TX(x, y) = x and
TY (x, y) = y i.e. TX and TY are marginal projection operators.

minimize
γ∈Π(µ,ν)

∫
Rd,Rd

c(x, y)dγ(x, y)

subject to TX#γ = µ, TY#γ = ν

(2)

In the discrete case, the optimal transport problem can be stated as follows:

minimize
γ∈Π(µ,ν)

∫
K,K

c(κ1, κ2)dγ(κ1, κ2)

subject to TX#γ = µ, TY#γ = ν

(3)

Since the problem has been stated as the discovery of a joint probability whose marginals equal
the two input measures and which minimizes the cost of transforming the first measure into the
second one, it is always well-defined even when we discuss the transformation of discrete measures
into continuous or discrete measures. The optimal value of the above optimization problems on
transportation plans γ ∈ Π(µ, ν) is known as the p-Wasserstein distance Wp(µ, ν) if the cost c(·, ·)
is given by the pth power dp(·, ·) of metric d(·, ·).

2.1 Properties of Wasserstein Spaces

We have stated the optimal transport problem over the domain (Rd,Rd) in the continuous case and
(κ, κ) in the discrete case. However, the problem is defined over any metric space (Ω, d). We denote
the space of probability measures over Ω endowed with the p-Wasserstein metric asWp(Ω). For
any 1 ≤ p < ∞,Wp(Ω) is compact only iff the underlying ground metric space Ω is compact. If
Ω is not bounded, thenWp(Ω) is not even locally compact. W∞(Ω) is neither compact nor locally
compact irrespective of whether Ω is bounded or compact. Also, the various p-Wasserstein distances
are ordered through an application of Jensen’s inequality i.e. Wp(µ, ν) ≤Wq(µ, ν) if p ≤ q. If Ω is
bounded i.e. diam(Ω) = D, then Wq(µ, ν) ≤ D1−p/qW p/q

p (µ, ν) for p ≤ q.

2.2 Geodesics in Wasserstein Spaces

Below we state McCann’s linear interpolation theorem [25] which allows for the construction of
constant-speed geodesics using optimal transport plans.
Theorem 1. Wp(Ω) is a length space if Ω is a convex domain in Rd. Also, for µ, ν ∈ Ω and γ∗
being the optimal transport plan for the the ground transport cost c(x, y) = ||x − y||p, the curve
given by µγ

∗
(s) = (ps)#γ

∗ where ps(µ, ν) = x+ s(y − x) is a constant-speed geodesic from µ to
ν. If p > 1, all constant-speed geodesics can be expressed in this form. If µ is absolutely continuous,
there is only one such geodesic which has the form µ(s) = [(1− s)id+ sT ]#µ.

In µ(s), id is the identity transport map and T is the optimal transport map from µ to ν. This,
for s = 0, we obtain µ(s) = µ and for s = 1, we get µ(s) = T#µ = ν. Varying s from 0 to 1
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provides a continuous deformative interpolation between µ and ν linear in the Wasserstein space.
This property has widely been used in computer graphics and vision for morphing between images,
3D shapes, and point clouds; for interpolating between colormaps or texture profiles; for realistic style
transformations; and morphometry-based drug screening, cancer detection, and analyzing galaxy
morphologies. See [8] for a more detailed review of applications.

3 Empirical Risk Minimization with Wasserstein Loss

In multi-class or multi-label classification, the output is often a probability distribution over the output
space K: h(x) ∈ K or h(x) ∈ 2|K|. It is common to obtain such probabilities using a hypothesis
predictor h0(x) from a base hypothesis space H0 and then applying the softmax transformation s(·)
to it. While such problems are often solved using information-theoretic divergences such as KL
divergence when no additional relationship between the labels is available, it is useful to incorporate
the ground metric of semantic similarity between labels when it is available. This can be done using
the exact Wasserstein loss [1]. The resulting empirical risk minimization problem is as follows:

hθ̂ = argmin
hθ∈H

{
ÊS [W p

p (hθ(x), y)] =
1

N

N∑
i=1

W p
p (hθ(xi), yi)

}
(4)

[1] further makes the assumption that H = s ◦ H0 i.e. the result is obtained by applying the
softmax operation s to a base hypothesisH0 that maps the input into Rk. The Wasserstein distance
W p
p (h(x), y) is the result of an optimal transport problem:

W p
p (h(x), y) = minimize

T∈Π(h(x),y)
〈T,M〉

subject to T ∈ RK×K+ , T1 = h(x), T ′1 = y
(5)

Here, M ∈ RK×K+ is the cost matrix which is equivalent to Mκ,κ′ = dpK(κ, κ′) calculated from the
ground metric dK(·, ·)
Since the calculation of Wasserstein distances is a linear programming problem, it is expensive to
compute considering that the distance W p

p (h(x), y) might need to be computed between all pairs of
data points in the dataset. Regularizing the above objective using entropy of the plan H(T ) makes
the objective strictly convex.

W p
p,λ(h(x), y) = minimize

T∈Π(h(x),y)
〈T,M〉 − 1

λ
H(T )

subject to T ∈ RK×K+ , T1 = h(x), T ′1 = y

(6)

The form of the entropy-regularized objective allows a solution through iterated diagonal scaling
commonly known as the Sinkhorn-Knopp algorithm [11] which involves matrix-matrix or matrix-
vector multiplications and therefore can be speeded up easily using parallelized linear algebra libraries
or GPGPU programming.
Theorem 2. For p = 1 and any δ > 0, with probability at least 1− δ, the following holds

E[W1(hθ̂(x), y)] ≤ inf
hθ∈H

E[W1(hθ(x), y)] + 32KCMRN (H0) + 2CM

√
log(1/δ)

2N
(7)

Here, K = |K| is the number of output labels, CM = max(M) i.e. the maximum of the distance
matrix M and RN (H0) is the Rademacher complexity of the space H0 from which the base hy-
pothesis h0 is learned before a softmax transformation is applied to get output probabilities. For
most classifiers such as kernel machines or neural networks, RN (H0) decreases as the number of
datapoints N increases.

The above theorem for multi-label classification leads to similar statistical learning bound for the
multi-class setting where only one label is predicted per datapoint.
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Theorem 3. For κθ̂(x) = argmaxκhθ̂(κ|x), p = 1, and any δ > 0, with probability at least 1− δ,
the following holds

Ex,κ[dκ(κθ̂(x), κ)] ≤ inf
hθ∈H

KE[W1(hθ(x), y)] + 32K2CMRN (H0) + 2KCM

√
log(1/δ)

2N
(8)

The proof involves obtaining an ERM bound using R̂N (L) and associating R̂N (L) to R̂N (H0) using
R̂N (L) ≤ 8KCMR̂N (H0) where R̂N is the empirical/sample Rademacher complexity.

4 Convergence of Finite and Infinite Mixture Models

Mixture models are a very popular class of unsupervised machine learning algorithms. Often,
practitioners fit a mixture model and try to interpret the cluster parameters as being representative of
population cohorts. However, it is not clear if such interpretations are justified. It might be possible
to fit a mixture model with different model parameters than the latent ground truth and still be able
to approximate the mixture density very well. [2] establishes the conditions for the convergence of
mixing distributions and provides posterior contraction rates for finite and infinite mixture models
under smooth and supersmooth likelihoods. Works prior to [2] either focused on the convergence of
the posterior distribution of the data density pG or studied the convergence of cluster parameters for
univariate and finite mixture models [26, 27].

If a sequence of discrete probability measures Gn with k distinct atoms converges to G0 in the
r-Wasserstein metric, then the atoms of Gn must also converge to those of G0 after some permutation
of atom labels. As a result, studying the convergence of mixing distributions of mixture models in
the Wasserstein space is an intuitive way of understanding the identifiability of these models and
establishing corresponding rates of convergence.

Consider a discrete probability measure G =
∑k
i=1 piδθi . It can be combined with a likelihood

density f(·|θ) to yield a mixture density: pG(x) =
∫
f(x|θ)dG(θ) =

∑k
i=1 pif(x|θi). Similar to

G, consider G′ =
∑k
i=1 p

′
iδθ′i . The OT distance between G and G′ on an underlying ground metric

(Θ, ρφ) is given as

dρφ(G,G′) = inf
q∈Q(p,p′)

∑
i,j

qijρφ(θi, θ
′
j) (9)

Here θ, θ′ ∈ Θ. Also, φ is a convex function which induces an f-divergence between probability
densities: ρφ(fi, f

′
j) =

∫
φ(f ′j/fi)fidµ Examples include the squared Hellinger distance for φ(u) =

1
2 (
√
u− 1)2, total variation distance for φ(u) = 1

2 |u− 1|, and KL divergence for φ(u) = − log(u).
Each φ corresponds to a particular f-divergence ρφ, which induces a composite transportation distance
dρφ .

Lemma 4. Let G,G′ ∈ G(Θ) such that both ρφ(pG, pG′) and dρφ(G,G′) are finite for some convex
function φ. Then, ρφ(pG, pG′) ≤ dρφ(G,G′).

The above lemma illustrates that the f-divergence between mixture distributions is dominated by the
composite transportation distance between the mixing measures G and G′. In this sense, dρφ yields
a stronger topology on G(Θ) than the corresponding f-divergence ρφ on the mixture densities pG.
Convergence of mixture densities may not necessarily imply convergence of the underlying discrete
mixing distribution which is studied by [2].

The paper establishes Wasserstein metric identifiability of model parameters for finite mixture models,
infinite convolution mixture models, and infinite mixture models with Dirichlet process prior on the
clusters. Various proofs require the likelihood function to be either finite identifiable or strongly
identifiable, the latter being stronger of the two condition. The paper also derives the posterior
contraction rates for two types of mixture models: finite mixtures of multivariate distributions, and
infinite Dirichlet process mixtures.
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Theorem 5. Required assumptions:

(A1) The underlying space Θ is compact, and the likelihood functions f(·|θ) are strongly identifi-
able.

(A2) K(fi, f
′
j) ≤ C1||θi − θ′j ||2 for any θi, θ′j ∈ Θ.

(A3) For any Ginsupport(Π),
∫
pG0(log(

pG0

pG
))2 < C2K(pG0 , pG)

(A4) Under prior Π, for small positive δ, c3δk ≤ Π(|pi − p∗i | ≤ δ) ≤ C3δ
k and c3δkd ≤

Π(||θi − θ∗i | ≤ δ) ≤ C3δ
kd

(A5) Under prior Π, all pi as well as all pairwise distances ||θi, θj || are bounded away from 0.

Under the above assumptions, the posterior distribution of G contracts to the groundtruth G0 under
the L2 Wasserstein distance metric at a rate of (logn)1/4

n1/4 .1

The proof uses another theorem which under certain conditions establishes that Π(G|W2(G0, G) ≥
Mnεn|X1, ..., Xn)→ 0 in PG0

probability. Here, εn is a sequence such that nεn is bounded away
from 0 or tends to infinity. and Mn is a corresponding sequence assumed to satisfy certain intricate
conditions involving packing numbers in the space Ḡ(Θ) of all discrete measures including those
with countably infinite support. Taking εn to be a sufficiently large multiple of (log n/n)1/2 and
Mn to be a large multiple of ε−1/2

n is shown to satisfy all required conditions, thereby providing the
posterior contraction rate (logn)1/4

n1/4 which is minimax optimal upto a logarithmic rate for univariate
finite mixtures as proved by [26].
Theorem 6. Required assumptions:

(A1) The Lebesgue density of the base measure P0 is bounded away from zero. Also, it places full
support on a bounded set Θ ⊂ Rd.

(A2) K(fi, f
′
j) ≤ C1ρ

m1(θi, θ
′
j) for any θi, θ′j ∈ Θ.

(A3) For any G ∈ support(Π),
∫
pG0

(log(
pG0

pG
))2 < C2K(pG0 , pG)m2

Under the above assumptions, there is a sequence βn → 0 such that Π(W2(G0, G) ≥
βn|X1, ..., Xn) → 0 in PG0

probability. For ordinary smooth likelihood func-
tions like the Laplacian density, the posterior contraction rate of G is dictated by
βn � (log n/n)2/((d+2)(4+(2β+1)d′)) For supersmooth likelihood functions such as the
Gaussian density, βn � (log n)−1/β

The proof proceeds by considering a sequence εn as a large multiple of (log n/n)1/(d+2). A
corresponding sequence Mn = RḠ(Θ)(8ε

2
n(C + 4))/εn is constructed where RG(t) is defined

as the inverse of Hellinger information function of the W2 metric on the space Ḡ. Hence
βn = Mnεn = RḠ(Θ)(8ε

2
n(C+4)). Under ordinary smoothness such as that of the Laplacian density,

RḠ(Θ)(t) = t1/(4+(2β+1)d+δ) for some positive δ. Hence βn � (log n/n)2/((d+2)(4+(2β+1)d′)).
For supersmooth densities such as the Gaussian density, RḠ(Θ)(t) = (1/ log(1/t))1/β yielding
βn � (log(1/εn))−1/β � (log n)−1/β

5 Domain Adaptation with Optimal Transport

Optimal transport is also used widely in domain adaptation [17]. In domain adaptation, one has
access to labeled examples from a source domain and unlabeled examples from a target domain.
The goal is to predict labels for examples from the target domain. This is different from the typical
train-test paradigm in machine learning, because covariate shift between the two domains is allowed.

1There seems to be a typo in stating this result in the paper’s Theorem 5 where it is stated as (logn)1/2

n1/4

whereas the paper introduction and proof correctly state and derive it as (logn)1/4

n1/4 .
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As a solution, optimal transport is used to map examples from the target domain to the source domain
using the marginal probabilities of examples in the two domains. The problem can be easily extended
to multiple source domains, each with its own covariate structure which can differ between source
domains.

Theorem 7. Given two samples XS and XT of sizes NS and NT drawn i.i.d. from source and target
domains respectively, µ̂S and µ̂T being the empirical probabilities with dirac-delta masses at the
observed datapoints, any d′ > d and ψ′ <

√
2, there exists N0(d′) such that for any δ > 0 and

min(NS , NT ) ≥ N0(d′) max(δ−(d′+2), 1) with probability at least 1 − δ for all h, the following
statistical bound holds:

RT (h) ≤ RS(h) +W1(µ̂S , µ̂T ) +

√
2

ψ′
log

(
1

δ

)(√
1

NS
+

√
1

NT

)
+ λ (10)

where λ is the minimal combined error of the ideal hypothesis h∗ that minimizes the combined error
RS(h) +RT (h).

The above statistical bound bears a striking resemblance to a similar bound for domain adaptation
obtained usingH-divergence instead of Wasserstein distance [28]. The above bound between source
and target risks is then used in [4] to obtain a bound between the empirical risk in the target domain
R̂T (h) and the risk of the optimal target hypothesisRT (h∗T ) as given in the following theorem:

Theorem 8. Let D be a labeled dataset of size n. Here βn points belong to the target domain and
(1 − β)n points belong to the source domain, and β in(0, 1). If ĥ is the empirical minimizer of
R̂α(h) = αR̂T (h) + (1− α)R̂S(h) and h∗T = min

h
RT (h), then for any δ ∈ (0, 1), the following is

true with probability at least 1− δ over the choice of samples:

RT (ĥ) ≤ RT (h∗T ) + c1 + 2(1− α)W1(µ̂S , µ̂T ) + λ+ c2 (11)

where

c1 = 2

√√√√2K
(

(1−α)2

(1−β) + α2

β

)
log( 2

δ )

n
+ 4

√
K

n

(
α

nβ
√
β

+
(1− α)

n(1− β)
√

1− β

)
and

c2 =

√
2

ψ′
log

(
1

δ

)(√
1

NS
+

√
1

NT

)
Another similar bound for domain adaptation is due to [3] which assumes a loss function L that is
bounded, symmetric, k-lipschitz, and satisfies the triangle inequality. Optimal transport is used to
obtain the optimal coupling γ∗ between the source data and target data:

γ∗ = argmin
γ∈Π(Ps,Pt)

∫
(αd(xs, xt) + L(ys, yt))dγ(xs, ys, xt, yt)

The labeling function h ∈ H is bounded i.e. |h∗(x1) − h∗(x2)| ≤ M . Again, NS and NT denote
number of source and target datapoints. Then for all λ > 0 and α = kλ, we have with probability at
least (1− δ) that:

RT (h) ≤ +W1(µ̂S , µ̂T ) +

√
2

ψ′
log

(
2

δ

)(√
1

NS
+

√
1

NT

)
+ λ+ kMφ(λ) (12)

where λ is again the minimal combined error of the ideal hypothesis h∗ that minimizes the combined
errorRS(h) +RT (h).

Thus, [4, 3] provide a theoretical basis for why optimal transport can be used for domain adaptation.
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Figure 1: These plots show ρ(Pθ,P0) as a function of θ when ρ is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

intersection contained in a set of measure zero. This happens to be the case when
two low dimensional manifolds intersect in general position [1].

Since the Wasserstein distance is much weaker than the JS distance3, we can now
ask whether W (Pr,Pθ) is a continuous loss function on θ under mild assumptions.
This, and more, is true, as we now state and prove.

Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable
(e.g Gaussian) over another space Z. Let g : Z × Rd → X be a function, that will
be denoted gθ(z) with z the first coordinate and θ the second. Let Pθ denote the
distribution of gθ(Z). Then,

1. If g is continuous in θ, so is W (Pr,Pθ).

2. If g is locally Lipschitz and satisfies regularity assumption 1, then W (Pr,Pθ)
is continuous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(Pr,Pθ) and
all the KLs.

Proof. See Appendix C

The following corollary tells us that learning by minimizing the EM distance
makes sense (at least in theory) with neural networks.

Corollary 1. Let gθ be any feedforward neural network4 parameterized by θ, and
p(z) a prior over z such that Ez∼p(z)[‖z‖] < ∞ (e.g. Gaussian, uniform, etc.).

3 The argument for why this happens, and indeed how we arrived to the idea that Wasserstein
is what we should really be optimizing is displayed in Appendix A. We strongly encourage the
interested reader who is not afraid of the mathematics to go through it.

4By a feedforward neural network we mean a function composed by affine transformations and
pointwise nonlinearities which are smooth Lipschitz functions (such as the sigmoid, tanh, elu,
softplus, etc). Note: the statement is also true for rectifier nonlinearities but the proof is more
technical (even though very similar) so we omit it.
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Figure 1: Figure from the WGAN paper [5] showing the utility of gradients provided by Wasserstein
distance loss versus Jensen-Shannon divergence loss. Wasserstein loss (left) is continuous and
provides a useful gradient, whereas the JS divergence loss (right) is discontinuous and the gradient
does not seem very useful for learning in the space of probability distributions.

6 Wasserstein Generative Adversarial Networks

Another popular model that makes use of optimal transport is Wasserstein Generative Adversarial
Network (WGAN) [5] . WGAN is a member of the family of models called Generative Adversarial
Networks (GANs) [29]. In a GAN, there are two predictive models, both of which are typically deep
neural networks. One of the networks called the generator network generates samples in the domain
of the dataset that are as realistic as possible. The discriminator network tries to distinguish between
the real samples in the dataset and the fake samples generated by the generator network. Thus, the
training of GANs can be viewed as a game between the two networks where generator network which
tries to fool the discriminator network and the discriminator network tries to accurately tell apart the
generator output from real data.

WGAN improves upon previous GAN losses and provides a more stable training procedure that is
less prone to mode collapse i.e. abrupt training failure. Original GAN used the Jensen-Shannon
divergence for training which is not continuous everywhere and differentiable almost everywhere.
Other losses such as KL-divergence that have been used with GANs have similar issues. However,
Wasserstein loss based on 1-Wasserstein distance proposed in [5] is continuous everywhere and
differentiable almost everywhere, which provides a training signal in all regions of the feature space
and prevents abrupt mode collapses that happened with previous GAN losses.

A primary assumption that is used in the theoretical analysis of WGAN if the finiteness of the mean
of the local Lipschitz constant. If the generator neural network is denoted as gθ(z) where θ are
parameters of the neural network and z is input to the generator from some distribution z ∼ Z and g is
locally Lipschitz with the local Lipschitz constantsL(θ, z), then g needs to satisfy Ez[L(θ, z)] < +∞.
The following theorems assume this property of g.

Theorem 9. If gθ is a feedforward neural network parametrized by θ (and therefore as a function
continuous in θ) and p(z) is a prior over z ∼ Z such that Ez[||z||] < ∞, Pr is the real data
distribution over X , and Pθ is the distribution of gθ(Z), then W (Pr,Pθ) is continuous everywhere
and differentiable almost everywhere.

The paper provides an example to show that other distances or divergences such as Jensen-Shannon
divergence or Kullback-Leibler divergence do not enjoy this nice property of the Wasserstein distance
and hence lead to instability while training the generator. Since the OT computation is highly
intractable in continuous function spaces, [5] uses the dual problem as follows:

W (Pr,Pθ) = sup
||f ||L≤1

Ex∼Pr [fw(x)]− Ez∼p(Z)[fw(gθ(z))] (13)

If the constraint ||f ||L ≤ 1 is removed, we obtain Wasserstein distances upto a multiplicative constant
which is good enough for training, because we are not interested in the computation of the exact
Wasserstein distance, but only in its use as an appropriate loss function for training a GAN.

Theorem 10. Given the real data distribution Pr and the generative data distribution Pθ based on
the distribution p(Z) over Z and the generator feedforward neural network gθ(z) which satisfies the
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assumption Ez[L(θ, z)] < +∞ described before, there exists a function f : X → R to the problem
13, and the gradient of the Wasserstein distance is given as

∇θW (Pr,Pθ) = −Ez∼p(z)[∇θf(gθ(z))] (14)

The gradient of the Wasserstein loss can now be used to backpropagate through equation 13 by
estimating Ez∼p(z)[∇θf(gθ(z))].

7 Selected Applications
Wasserstein distance is remarkably rich due to its ability to take the underlying geometry of a
measure’s domain into account. This allows it to naturally incorporate domain information into the
machine learning solution through the specification of an appropriate ground metric. Though the
specification of ground truth is an additional requirement of Wasserstein metric, it is often available
naturally e.g. word embeddings in natural language, object descriptors in computer vision, etc. This
distinguishing characteristic of Wasserstein distance has been used in specific domains such as natural
language processing, computer vision, etc. to build state-of-the-art methods for machine learning
tasks.

As an example, we present the application of optimal transport to calculating distances between
documents. [12] presents an unsupervised method for calculating Word Mover’s Distance by trans-
porting the histogram of words between two documents and using the Euclidean distance between
word embeddings as the ground metric. [13] further proposed Supervised Word Mover’s Distance
by learning an affine transformation of word embeddings and a word-importance weight vector
using label supervision for minimizing the stochastic LOO nearest neighbor classification error.
This application was the author’s introduction to Wasserstein distances and optimal transport. We
have provided a representative list of applications of optimal transport in machine learning in the
introductory section of this report.

8 Conclusion
In this report, we surveyed recent theoretical results underpinning the use of optimal transport in
statistical machine learning. In particular, we focused on the use of Wasserstein loss on training
multi-class and multi-label classifiers, and generative adversarial networks. We also examined the
risk bounds for the case when optimal transport is used for domain adaptation. Finally, we examined
the convergence and posterior contraction rates established recently for finite and infinite mixture
models using composite Wasserstein distance.

8.1 Potential Open Problems

A literature survey like this is an opportunity to identify potential avenues for future research. Some
of these are identified below.

• Robust Optimal Transport: Can we use a more robust specification of the underlying
ground metric that specifies not just the cost but also the uncertainty associated with it?

• Extreme Classification with Wasserstein Loss: Wasserstein loss provides a way to in-
corporate side information about the ground metric between labels into the classification
problem. Can training with the Wasserstein loss be scaled up to the regime of extreme
classification where such side information would be extremely valuable in making good
predictions?

• Connections with Kernel/Metric Learning: The specification of a ground cost immedi-
ately associates the Wasserstein metric with a corresponding kernel. Can this ground metric
be learned for challenging structured spaces such those of trees, graphs, strings, etc.? There
is associated recent work on ground metric learning [19] and sliced Wasserstein kernels
[18].

We hope to further understand the connections between the Wasserstein metric and its role in capturing
geometric information about machine learning tasks, and use it in solving our machine learning
problems.
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